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MERC PhD Project Proposal 2024/2025 

Smarter, Safer, Faster: 
Bridging Control Theory and Reinforcement Learning  

for Efficient and Trustworthy Decision-Making 
  

 

Keywords 
Reinforcement learning; Control theory; Data-efficiency; Formal guarantees 
 
Key research question(s) • How can we make learning faster in RL? 

• How can we provide guarantees on learned policies? 

Tools and techniques Reinforcement learning; Control theory; Markov decision processes; 
Stochastic approximation; Probability 

Target application(s) Robotics; Mobile autonomous agents 

Beneficiaries Industry; Researchers 

 Supervisors 
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Expertise: Control theory, Complex networks, Data-driven control 
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Supervisor 3: Giovanni Russo (giovarusso@unisa.it)  
www.sites.google.com/view/giovanni-russo  
 Expertise: Theory of decision-making, Data-driven systems, Control Theory, Complex 
Cyber-physical systems, Network systems 

Supervisor 4: Mirco Musolesi (m.musolesi@ucl.ac.uk)  
https://www.mircomusolesi.org  
 Expertise: Machine learning, Reinforcement learning, Computational models 
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Project description 

Introduction 

Context and motivation 

Reinforcement learning (RL) h as achieved impressive success across a wide range 
of complex tasks—from predicting protein 3D structures [Jumper, 2021], to controlling 
plasma in fusion reactors [Degrave, 2022], high-performance drone navigation 
[Kaufmann, 2023], and mastering collaborative or competitive games such as two-player 
sports, Go, and advanced video games [Won, 2021]. More recently, RL has even played 
a key role in fine-tuning large language models like GPT-3.5 and GPT-4. Despite these 
breakthroughs, current RL methodologies still face critical limitations. Specifically: 

1. they often demand prohibitively long training times, especially when dealing 
with large state and action spaces, limiting the accessibility and scalability of 
the technology;  

2. they typically lack theoretical guarantees on the quality or safety of the learned 
policies, hindering their adoption in safety-critical or high-performance 
domains. 

This project seeks to address these challenges by integrating insights and tools from 
control theory, with the goal of developing RL methods that are not only more efficient 
but also more reliable and grounded in formal guarantees. 

State of the art 

Recent studies have demonstrated that integrating principles from control theory 
into reinforcement learning (RL) can lead to more effective and sample-efficient control 
strategies. For example, [Zanon, 2021] used RL to dynamically tune the parameters of 
both the model and the objective function in Model Predictive Control (MPC). In a 
different approach, [Gu, 2016] accelerated learning by iteratively fitting local linear 
models to data gathered through exploration.  

A particularly compelling contribution is found in [De Lellis, 2023a], where the 
concept of a control tutor was introduced. This framework assumes the availability of a 
(possibly imperfect) feedback control law, which is used to intermittently guide the agent 
during exploration. Experiments showed that this guidance significantly reduces learning 
time, both for tabular methods and deep value-based algorithms. Despite these 
promising results, several open questions remain. Namely, (i) Does the benefit of the 
control tutor extend consistently to policy-based methods? (ii) In a multi-agent scenario, 
can multiple control tutors coexist, or will their guidance conflict? (iii) How can the 
advantage provided by a control tutor be formally quantified and theoretically 
guaranteed?  

A further meaningful contribution is found in [De Lellis, 2023b], which introduced a 
novel reward shaping technique that brings formal performance guarantees into the 
realm of reinforcement learning—an area where such assurances are notoriously rare. 
By evaluating the cumulative reward function, this approach enables principled 
assessments of policy quality, a critical advancement for deploying RL in safety-sensitive 
and mission-critical domains. However, this rigor comes at a cost: the reward signal 
becomes sparse, potentially hindering the agent’s ability to efficiently learn optimal 
policies, especially in deep RL settings. 
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Objectives 
The workplan and objectives are flexible and will be adapted depending on the inclination of the student 

and the results obtained in the early phases of the project. 
O1. Develop and validate formally control-theoretical based methodologies to 

increase data efficiency in reinforcement learning. 
O2. Develop practical control-theoretical based methodologies that provide 

stability and performance guarantees on the learned policy in reinforcement 
learning. 

O3. Validate the developed strategies on the problem of agent navigation. 

Methodology 

The project will begin with a comprehensive and structured classification of existing 
approaches that integrate reinforcement learning (RL) with tools from control theory. 
This survey will highlight the strengths, limitations, and unresolved challenges of each 
method, setting a solid foundation for the contributions to follow.  

Research focus will initially address Objective O1: to provide a formal, analytical 
validation of the improved data-efficiency introduced by control tutors—a concept 
already demonstrated numerically in [De Lellis, 2023a] across various settings. Our 
strategy will begin by analyzing how the tutor’s action suggestions alter a uniform 
exploration policy and yield a new probability function. We will then extend the classical 
convergence proof of the Q-learning algorithm for discrete Markov decision processes to 
account for this non-uniform, tutor-influenced exploration. The investigation will explore 
tools such as stochastic approximation theory and convergence of Markov decision 
processes. This theoretical development will also allow us to quantify how the quality of 
a control tutor—measured by the optimality of its suggestions—impacts learning speed. 
Building on this foundation, we will explore the multi-agent scenario: heterogeneous 
robotic agents (e.g., land vs. aerial units, fast vs. slow movers) collaborating in an 
unstructured environment. We aim to determine whether the benefits of a single control 
tutor naturally generalize to settings with multiple tutors, or whether coordinated 
schemes—such as a leader tutor dynamically modulating others—are necessary to 
avoid interference or inefficiency. 

To address Objective O2, the research will build on the reward shaping method 
introduced in [De Lellis, 2023b], which marked a significant step forward by providing 
formal performance guarantees in reinforcement learning—an area where such 
assurances are typically elusive. However, a drawback of this method is that it 
introduces sparsity into the reward signal: reward values can vary sharply across the 
state-action space, making it difficult for learning algorithms—especially those relying 
on function approximators such as deep neural networks—to generalize effectively. To 
overcome this limitation, the PhD student will explore alternative shaping strategies that 
maintain the theoretical guarantees while improving the reward signal's smoothness and 
continuity. Specifically, we will design shaping functions based on smooth, energy-like 
potential fields, which are expected to guide the learning process more gently and 
reliably than the discrete approach used in [De Lellis, 2023b]. In parallel, we will 
investigate the feasibility of combining deterministic guarantees (as provided by the 
original framework) with probabilistic ones, offering a broader and more flexible 
spectrum of safety and performance assurances. This analysis will possibly be based on 
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probabilistic convergence methods and a Bayesian approach to the characterization of 
system trajectories. 

Finally, in the context of Objective O3, the combination will be investigated 
numerically of different techniques developed in the project, to obtain both reduced 
learning time and guarantees of performance. The best performing algorithms developed 
in the project will be validated on the task, for a ground mobile robot, of reaching a 
specified region, while avoiding unsafe regions, mimicking vehicle driving or robot 
navigation on an extraterrestrial planet. 

Relevance to the MERC PhD program 

Relevance and beneficiaries 

The project is grounded in a strong methodological foundation, aiming to bridge 
control theory and reinforcement learning in a principled and impactful way. This 
integration is expected to yield two key advantages: 

1. Significantly reduced learning times, and 
2. Formal certification of properties of the learned policies. 
Faster learning will help make reinforcement learning more accessible and scalable—

enabling its application to complex tasks even in environments with limited 
computational resources, rather than relying solely on high-performance 
supercomputers. At the same time, the ability to certify policy properties marks a critical 
step toward the safe and trustworthy deployment of RL in high-stakes, real-world 
scenarios. This includes domains such as autonomous driving, search-and-rescue 
operations, and robotic exploration in extraterrestrial environments, where safety and 
reliability are non-negotiable. Together, these advancements will help push 
reinforcement learning from powerful yet opaque tools toward rigorously grounded and 
widely applicable technologies.  

Relevance to the MERC PhD program 

This project is highly interdisciplinary, sitting at the intersection of dynamical systems, 
control theory, and machine learning. Its aim is to develop both practical algorithms and 
theoretical advances that address complex control problems from a fresh, integrative 
perspective. 

Skills 

Throughout the project, the student will acquire a robust and versatile set of skills, 
supported by both hands-on supervision and independent study. These will include: 

• Machine learning algorithms and methods, with a strong emphasis on 
reinforcement learning and its integration with control-theoretic tools, 

• Dynamical systems and Markov decision processes, particularly with regard to 
stability and convergence analysis, 

• Advanced computer programming skills, including proficiency with modern 
languages and cutting-edge machine learning libraries. 

In addition to technical expertise, the student will receive targeted guidance to refine 
their scientific communication skills—including technical writing and oral 
presentations—and to develop the ability to critically and efficiently navigate the 
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scientific literature. These competencies will position the student for success in both 
academic and industry settings 
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Joint supervision arrangements 
The student will meet at least weekly with at least one of the supervisors. The whole 

team will meet at least once every 1 or 2 months for a progress update. 

Location and length of the study period abroad (min 12 months) 
The student will be able to spend a research period (or research periods) at the lab of 

Mirco Musolesi at the University College London, or of a scientist with whom a 
collaboration is active. 


